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Abstract. I t  is shown that the rotating wave approximation in the minimal coupling 
Hamiltonian with the A2 term leads to an incorrect energy spectrum of the polariton mode: 
in particular, to a spurious polariton instability which should not occur for a photon-matter 
system consisting of radiation and atoms without the Coulomb interaction. Thus the 
counter-rotating term in the presence of the A’ term plays a crucial role in the instability 
property of the system. The super-radiant phase transition in the Dicke model is shown to 
be accompanied by polariton instability, and therefore by instability of the ground state of 
the photon-matter system. The rotating wave approximation, as well as the neglect of the 
A2 term, should therefore nor be made for the study of the thermodynamic phase transition 
and instability properties of the ground state of the system. 

1. Introduction 

In general, a truncated Hamiltonian gives an approximate energy spectrum and an 
approximate equation of motion which differs from the original correct one. Therefore 
its validity is limited to particular usage. In quantum optics, the counter-rotating term, 
the A2 term and the P’ term are often truncated in the basic Hamiltonian in order to 
simplify the calculation. If the A2 term is omitted, however, the resulting field equation 
for the vector potential A(r, t )  contains an extra term which makes the state A = 0 
unstable (Yamanoi 1976). Similarly, if the P’ term in the dipole coupling Hamiltonian is 
omitted, an extra term P ( t )  for polarisation is introduced in the equation of motion, 
making the state P = 0 unstable (Yamanoi and Takatsuji 1977). In other words, the 
consequence of these extra terms is to make the polariton mode with eigenfrequency w 
soft (w  + 0) and finally unstable ( w 2  < 0) under some threshold condition (polariton 
instability). However, the above-mentioned instability does not represent the true 
dynamical property of the photon-matter system, because this is originated entirely in 
the truncation of the A’ or the P’ term. 

Since the polariton mode is a small oscillation of fields A and P about the state 
A = P = 0 (the ground state in which the  photon is absent and all atoms are in their 
lowest states), the polariton instability means the instability of the ground state of the 
photon-matter system, indicating the appearance of a new ground state (A f 0, P f 0) 
with energy lower than the normal ground state (A = P = 0). 

Only when we consider a situation where each of these extra terms does not play any 
crucial role, we can use the approximate Hamiltonian without the A’ or the P2 term to 
study electromagnetic phenomena which have nothing to do with the instability of the 
ground state of the photon-matter system. 

0305-4470/79/091591+ 13$01.00 @ 1979 The Institute of Physics 1591 
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In the study of laser oscillation and super-radiance, one considers the behaviour of 
the amplitude of an electromagnetic wave whose frequencies are assumed not to be 
softened; in other words one is not concerned here with the polariton instability or the 
instability of the ground state. This is the reason whjf the truncated Hamiltonian (the 
Dicke Hamiltonian, for example) has worked well; i.e., a good agreement between 
theory and experiment in the study of laser oscillation and super-radiance. On the 
other hand, if we consider phenomena where instability of the ground state ( w 2  < 0 )  or 
the softening (w + 0) plays a crucial role, e.g. the thermodynamic phase transition, this 
truncation should not be made. Thus we should note that there exists a limit to the 
applicability of the truncated Hamiltonian. 

The Dicke model Hamiltonian HD, in which both the counter-rotating term (CR 
term) and the A* term are truncated, has often been successfully used to study the 
electromagnetic interaction between radiation and atoms. This has mainly been used to 
describe the resonant interaction in low atomic concentration (gas), occurring in a state 
far from thermal equilibrium in which the softening of the photon frequency is not 
concerned. 

Recently, Hepp and Lieb (1973) studied the thermodynamics of the HD and found a 
second-order phase transition in it, which they called the super-radiant phase transition 
(SPT). Then the CR term was taken into account by Car1:iichael e? al (1973), who 
showed that the critical property is not changed qualitatively, but that the CR term 
makes the SPT easier. Both the CR and the A2 terms were taken into account by 
Razaewski et a1 (1975). They showed that in this case the SPT is forbidden to occur and 
concluded that in reality the SPT is impossible in the photon-matter system consisting of 
radiation and two-level atoms without the Coulomb interaction (system D). 

On the contrary, Gilmore and Bowden (1976, 1977a, b) and Orszag (1977) argue 
that it is possible for the SPT to occur in the system D. In their mathematical formulation 
use was made of the Hamiltonian without the CR term, while the A* term is retained. 
Thus, in the present state of things, two contradictory arguments exist on the problem 
of the possibility of the SPT in the system D. This discrepancy, however, originates 
entirely in the problem as to what form of interaction Hamiltonian should be used to 
describe the electromagnetic interaction: more concretely in the problem of the validity 
of the RWA, for the study of the thermodynamic phase transition. 

The purpose of the present paper is to examine the validity of the RWA in the 
Hamiltonian with the A2 term for a correct mathematical formulation of the ther- 
modynamic phase transition. In the next section we establish the relation between 
polariton instability and the SPT by studying the instability property of various model 
Hamiltonians for which critical properties have been studied by the thermodynamical 
argument. It will be shown that the SPT is always accompanied by the polariton 
instability (a2 < 0) .  Accordingly the onset of the polariton instability may be required 
for the SPT to occur. Thus the problem of the possibility of the SPT in the system D is 
reduced to that of the polariton instability in the same system. In 0 3, the stability of the 
system D is shown rigorously, through the polariton dispersion relation w 2 ( k )  evaluated 
by taking into account the A 2  term, the CR term, and the many levels of the atom, 
instead of two levels. The reason for considering the many-level atom when taking into 
account the CR term is as follows. Consider for example the response of an atom (with 
resonance frequencies RI ,  R2 . . .) to external radiation of frequency a(-0,). The most 
dominant term in the response is the resonant term l / ( w  -RI) .  The CR term in the 
Hamiltonian gives rise to a factor l / w  + &). If this smaller term is taken into account, 
one should also take into account another term of small magnitude l / ( w  -a2) arising 
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from off-resonance of another level, if I l / (w  -fl~)l- I l / (w  +fl~)l. Thus, taking into 
account the CR term requires many more than two levels. The rigorous result of w 2 ( k )  
will show that the polariton instability does not occur in the system D, i.e. w z ( k )  > 0. In 
04, we study the effect of the RWA on the polariton instability and the dispersion 
relation. It will be shown that the RWA in the Hamiltonian with the A’ term leads to an 
incorrect eigenfrequency of the polariton; that is, the RWA leads to a spurious polariton 
instability w ’ ( k )  < 0, by which the occurrence of the SPT is made possible even in the 
system D. In conclusion, the truncation of the CR term in the presence of the A’ term 
leads to incorrect results for the study of thermodynamic phase transitions and the 
instability properties of the ground state in the photon-matter system. 

2. Relation between polariton instability and the SPT 

In the study of the thermodynamic phase transition in the photon-matter system 
consisting of single-mode radiation and N two-level atoms without the Coulomb 
interaction, four types of Hamiltonian have been used which are summarised as follows: 

N N 

/ = 1  / = 1  
H=a’a+ 1 (E/~)(T;+N-”’ 1 [ A ( U + a ;  + a a ~ ) + A ‘ ( a + ~ ~ ~  +UU,)]+K(U+U’)’ 

(2.1) 

where a and U +  are photon annihilation and creation operators respectively; a;, 
a: = (a; f iuj”)/2 are Pauli operators for the j th atom. In equation (2.1) photon energy 
is normalised to unity, E is the energy difference between two levels; and the coupling 
constant A ’  for the counter-rotating term (CR term) is assumed to be arbitrary. The last 
term is the A’ term. Throughout this paper we use units such that h = c = 1. The 
Hamiltonian (2.1) includes all of the case mentioned in § 1. The strong coupling 
condition for each case, derived by thermodynamical considerations, is given by 

(i)  Hepp and Lieb (1973) ( A ’  = 0, K = 0): 

€ < A 2 .  (2.2a) 

(ii) Carmichael et a1 (1973) ( A ’  = A ,  K = 0): 

E < (2A )’. (2.2b) 

(iii) Rzazewski et a1 (1975) ( A ’  = A ,  K # 0): 

~ ( 1 + 4 ~ ) < ( 2 A ) ’ .  (2.2c) 

(iv) Gilmore and Bowden (1976) and Orszag (1977) ( A ’ =  0, K # 0): 

€ < A Z .  (2.2d) 

In the following we show that these conditions are just the same as those for the 
polariton instability; (polariton eigenfrequency)’ < 0. To this end, we evaluate the 
eigenfrequency of the polariton (elementary excitation in the photon-matter system). It 
can be obtained as the pole of G(o)  which is the Fourier transform of the double 
time-retarded photon Green’s function defined by Zubarev (1960): 

G ( t )  = - iO( t ) ( [a( t ) ,  a’]).  
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The equation of motion for G ( w )  =( (a  : a’)) is given by 

o( (a  :a ’ ) )= ( [u ,  a’])+(([a, H1:a’)). 
In the linear approximation and long-wavelength limit, we may use the following 
approximations : 

(((Tfa :a+))-((TL)O((a :a ’ ) )  

((a7 :a+) ) - ( (&  :a ’ )>=( (a- :a+) ) ,  ( j # k )  

where 

(gz)o = - tanh(~/2kT).  

In these approximations the coupled algebraic equation for the four Green’s functions 
is obtained in the form: 

(W - 1 -2K) -2K - ~ ~ 1 / 2  - ~ ” 1 / 2  

(2.3) 
2K (U + 1 + 2K) A‘”’’ AN1/’ ] = 

A ’ ( ( T ~ ) ~ / N ~ I ~  (W - E )  0 
-A ’ ( ( T ~ ) ~ / N ’ / ’  -A ( ( T Z ) o / J ~  o (0 + E )  

where G = ( ( a :  a’)), H = ((a’ : a’)), I = (((T- : a’)), J = ((a’ : a’)). From equation 
(2.3) we get G(w) ,  whose denominator is the determinant D ( w 2 )  of the matrix in 
equation (2.3). Thus the eigenfrequency is a solution of the secular equation given by 
D ( W ’ ) ~  = 0; that is 

W 4  + W ’[2(i2 - if’) - E - 1 - 4 K ]  -k (1 + 4 K ) E 2  + 2€ (1 + 2K)(i2 + 1”) 
- g K E i i f  + (1’- i”)* = 0 (2.4) 
2 1/2  - 2 1/2 where i = A(a )o , A’ = A ’ ( a  . 

Let the two solutions of equation (2.4) be U: and U !  corresponding to the upper 
branch and the lower branch respectively. The instability condition (U’ d 0) is given by 
D(w’ = 0) d 0; that is 

(2.5) (1 +4K)E2 + 2 ~ ( 1 +  2K)(i2 + A I 2 )   KEA^'+ (I2 -A’2)2 6 0. 

Let us consider the four cases mentioned before. 
(i) ( A f  = 0, K = 0). Equation (2.5) reduces to 

( E  + i2)’ d 0. ( 2 . 6 ~ )  

(ii) ( A f  = A ,  K = 0). Equation (2.5) reduces to E + ( 2 i ) 2 d  0, i.e. 

6/(2A)’ d t anh(~/2kT) .  

At the absolute zero ( T  = 0), the condition of U !  < 0 becomes 

E / ( ~ A ) ’ C  1 (strong coupling condition). (2.66) 

At finite temperatures, the critical temperature T, of softening, W !  = 0, is determined 
by the gap equation 

E /  (2A ) = tan h ( E /  2 k T,) . 
(iii) ( A ’  = A ,  K f 0). Equation (2.5) reduces to 

(1 + ~ K ) E  + (21)’s 0. 
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The strong coupling condition is then given by 

(1 +4K)E < (2A)’ ( 2 . 6 ~ )  

which cannot be satisfied (Rzazewski et a1 1975) because, expressing X’ and K in terms 
of atomic parameters (d  = matrix element of dipole moment, p = density of the atoms, e 
and m are respectively charge and mass of electron), 

A’ = -2.rrpe2d2 tanh(~/2kT) ,  K = 27rpe2/2m 

and using the inequality derived from the TRK sum rule e2/2m > ~d’,  we have 

( 1 + 4 ~ ) € + ( 2 X ) ~ > ~ + 8 m ’ d ~ p ( l - t a n h  ~ / 2 k T ) > 0 .  

(iv) ( A ’  = 0 , K f 0). Equation ( 2 . 5 )  reduces to 

(E + A’)[( 1 + ~ K ) E  + X’] 0. 

The second factor on the left-hand side is positive definite: 

O <  (1 + ~ K ) E  +(2x)2 < (1 + ~ K ) E  + A 2 .  
However, the first term can become negative: E + X2 G 0, i.e. 

€ / A 2  s t anh(~/2kT)  

from which the strong coupling condition is obtained as 

E < A 2  (2.6d) 

and the gap equation is 

E/A = tanh ~/2kT, .  

These strong coupling conditions for each case are just the same as equations (2.2) 
except equation ( 2 . 6 ~ ) .  

Furthermore, the gap equations obtained above are just the same as those obtained 
by thermodynamic considerations. We notice that the instability condition given by 
equation ( 2 . 6 ~ )  cannot be satisfied. This means that under the strong coupling 
condition the eigenfrequency does not become purely imaginary but becomes negative 
(negative energy polariton). To see this, we begin with the original Hamiltonian (2.1) 
with A ’  = K = 0: 

N N 

j = l  j = 1  
H = a+a + ( 4 2 )  af + (A/N1”)  1 (u’u; + ac~f ) .  (2.7) 

Shifting the zero of energy to the lowest energy level, and introducing the cooperative 
operator defined by 

N 

j = 1  
6;  = (l/N1”) af exp(ik. Rj)  

we rewrite equation (2.7) as 

( 2 . 8 ~ )  

(2.86) 



1596 M Yamanoi 

where 
b = bk =U, 6’ = bf;+ 

Since we are considering low excited states, the operators bk and 6; may be regarded as 
Bose operators: 

[bk, b;,]=-(I/N) 1 Uf eXpi(k’-k)’Rj-8k.k. 

In equation (2.9) we retain only the mode with k = 0 for the matter field, since another 
mode with k # 0 does not interact with the long-wavelength single-mode radiation. 
Then in the long-wavelength limit and in low excited states above the normal ground 
state, equation (2.9) reduces to 

N 
(for low excited states). 

j =  1 

H = a f a  +Eb’b +A(a+b +ab’) 

= w-a,’ain+w+b:bin, 
where 

W -  = ${I + E  - [( 1 -E)’ + 4A 2]1’2} 

U+ = ~ { l  + E  + [( 1 -E)’ +4A 2)1’z} 
1 

ai, = a cos 8 + b  sin 6 

b,, = b cos 8 - a  sin 8 (tan 28 = 2A/( 1 -E) ) .  

Therefore we see that under the condition given by 

€ < A 2  (2.10) 

the polariton energy of the lower branch becomes negative ( o + < O ) ,  showing the 
instability of the ground state. Then equation (2.10) is the strong coupling condition for 
case 1. 

From these examples we may conclude that the SPT is accompanied by the polariton 
instability, and that whereas the nonlinearity is required to determine the structure in 
the ordered phase, the criterion of the possibility of the phase transition is given by the 
linear theory, for which a rigorous answer can be obtained. 

3. Stability of a system consisting of many-level atoms and a multimode radiation field 

We saw in the preceding section that the SPT is accompanied by a polariton instability in 
the photon-matter system. This relation may be interpreted as follows. As mentioned 
in 9 1, the instability of a polariton means the instability of the ground state, which 
indicates the appearance of a new ground state (A # 0, P # 0) with a lower energy than 
the normal ground state (A = 0, P = O), hence allowing the SPT to occur. Thus the 
problem of the possibility of the SPT is reduced to the problem of the polariton 
instability, which can be solved rigorously using the relation between wave-vector k and 
eigenfrequency w given by k 2  = e(w)w2 (e.g. see Landau and Lifshitz 1963). 

In this section, we study the linear instability property of the system D consisting of 
radiation and atoms without any direct interaction. We begin by treating the atom as a 
two-level system. In this case, w z ( k )  is given by 

(3.1) kZ = E(W)W’ = [l + ~ X ~ E ~ ~ : Z / ( E ’ - W ’ ) ] U ~  
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where p is the number density of atoms and d12 is a dipole matrix element. The 
schematic curve of ~ ’ ( k ’ )  obtained from equation (3.1) is shown by curve C in figure 2, 
which shows 0 2 ( k 2 )  > 0 for all modes; that is, all polaritons are stable. This is consistent 
with the result obtained by Rzazewski et a1 that the SPT does not occur in the system D. 

Equation (3.1) with e 2 / m  instead of 2~d:2 can be derived by Lorentz’s Theory 
(Lorentz 1909). A quantum mechanical treatment has been given by Hopfield (1958), 
using the second quantised Hamiltonian. In his formulation, both the CR and the A’ 
terms are included in the Hamiltonian; only for these can equation (3.1) be derived. 
However, making the two-level approximation and at the same time taking into account 
the CR term are not consistent procedures. The reason is, as mentioned in § 1, the 
inclusion of the CR term requires one more level than the two under consideration. To 
remove this shortcoming we should take a many-level atom when the CR term is taken 
into account. Then the number of interaction terms between atoms and radiation is 
increased. It may be plausible to expect that many more interaction terms make the SPT 
easier to occur. Then the question arises: Can we expect onset of the instability if many 
levels are taken into account although it is impossible in the two-level atom? This 
question will be answered by considering many modes and many levels at the same time. 

In addition there exists a reason to consider many modes of radiation. In this 
connection we first note that the approximation of the two levels for the atom and the 
single mode for radiation is intended to describe the situation in which strong single- 
mode radiation is present, which interacts resonantly with the atom. Only for such a 
situation is the two-level atom and single-mode photon a meaningful approximation. In 
considering the onset of the thermodynamic phase transition, however, we should start 
from the normal thermodynamic branch, in which a strong particular mode has not yet 
grown up, but in which many modes are excited with small oscillations about the mean 
zero value. Thus we should consider many modes of radiation and a many-level atom. 

Guided by these considerations we next study the linear instability property of the 
system rigorously by taking into account many modes, many levels, the CR and the A’ 
terms. This can be effected easily by extension of equation (3.1) to the case of 
many-level atoms. With a replacement of the dielectric function in equation (3.1) by 
the dielectric function of many-level atoms (e.g. Loudon 1972), the required dispersion 
relation is obtained in the form 

r 

The schematic curve of u Z ( k 2 )  obtained from equation (3.2) is depicted in figure 1, 
which shows that even the lowest branch is stable, and that the stability obtained in the 
two-level approximation is not changed although the number of energy levels has 
increased. Therefore, we may use the two-level approximation for the atom to study 
the instability property of the photon-matter system without introducing an error by 
this approximation. 

4. Influence of the RWA on the polariton eigenfrequencies and the instability property 

The RWA has been used often with the approximation of two-level atoms and single- 
mode radiation. A physical argument to justify it may be as follows. As mentioned in 
§ 1, inclusion of the CR term requires more energy levels than two. Conversely, if one 
restricts oneself within the two-level approximation, (i.e. taking into account only the 
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Figure 1. Polariton dispersion curve for a case in which each atom has three resonance 
frequencies n,, 02 and a,. If the direct interaction between the atoms is neglected, the 
resonance frequencies remain constant as the atomic density is increased. 

most dominant resonant term), one should neglect smaller effects due to the CR term. 
However, the situation exists in which the CR term contributes the same magnitude as 
the resonant term. An example is a low-frequency limit of response; of the atoms to the 
radiation, because in this condition we have l/(fll + U )  = l/(fll -0 )  as w + 0. Since the 
SPT is also the phenomena in the static limit, we see that the CR term should not be 
regarded as a small effect in the formulation of the SPT. To see this, we study the 
contribution of the CR term in the Hamiltonian with the A’ term to the instability 
property of the photon-matter system D, whose rigorous stability has been studied in 
§ 3. 

H = C  k a i a k +  1 ( E / ~ ) ~ T : + ( N ) - * ” C  1 Ak[C7fak exp(ik.Rj)-cT7aL e x p ( - i k . ~ , ) ]  

The Hamiltonian is gilen, if the CR term is neglected, by 
N N 

k j = l  k j = l  

k 

where 
A k  = -ie(27rp/k)”’(d.  e) ( 4 . 2 ~ )  

Kk  = (e2 /2m)2rrp /k .  (4 .2b)  

Changing the zero of energy to the lowest energy level, and introducing the collective 
operators 6 ;  and bk defined by equations (2.8),  we rewrite equation (4.1) in the 
following form: 

(4.3) 
To get the polariton dispersion relation w’ (k ) ,  we linearise equation (4 .3 )  by regarding 
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b l  and bk as Bose operators, as done in 0 2 .  In this linear approximation, the ensemble 
of two-level atoms is equivalent to a harmonic polarisation field. With the help of the 
relation (e.g. Milonni 1976) e’/m = 2 ~ d f 2 ,  we rewrite hk and K k  in equations (4 .2)  as 
follows : 

hk = - i E ( m p / k ) ” 2  ( 4 . 4 ~ )  

K k  = 7TE ’p /  k (4.46)  

where p = 2 p d : z / ~ .  
The Heisenberg equations of motion in the RWA are obtained in the form 

where hk and K k  are given by equations (4 .4 ) .  

following secular equation in case (iv) with the A2 term but without the CR term: 
Assuming the time dependence of exp( - i d )  for all the operators, we obtain the 

u4 - w ’ ( 2 r P e 3 /  k + k + 4 7 ~ p ~ ’  + E ’) + E’ k + 2.rrPe4 - 3 r 2 p 2 E 6 /  k 2  = 0. 

Note the appearance of a term which is singular at k = 0. This singular term, however, 
does not appear in the correct equation for case (iii) with both the CR and the A2 terms, 
which is given by (Hopfield 1958): 

w 4 - w ~ ( ~ ~ + ~ T ~ E ~ + E ~ ) +  k2E2 = 0. 

Corresponding to case (ii) without the A* term but with the CR term, we have the secular 
equation in the form 

4 w -W2(k2 + = 0 

and for case (i) with neither the CR nor the A2 terms, we have 
2 

w - w ( k  + E )  + kr - ~ p ~ ~ / k  = O .  

For each case, the dispersion curve, w! (k’),  of the lower branch is depicted schematic- 
ally in figure 2.  From the secular equations, the instability condition U! 4 0 for each 
case is obtained: 

(i): 

kc 7$e3/k = lhkI2 

(ii): 

-E’ k 2  - 47@e4 s 0, i.e. kE G 12hk l 2  
(iii): 

no instability 

(iv): 

~ ~ k ~ + 2 ~ p ~ ~ - 3 ~ ~ p ~ ~ ~ / k ~  S 0 ,  i.e. (Ek-lAk12)(Ek +31hk12)S0. 
If one mode is chosen and its photon energy is set at unity ( k  = l ) ,  these conditions are 
just the same as that obtained in 5 2.  Note that all these instabilities are only spurious, 
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Figure 2. Polariton dispersion curve of the lower branch derived from Hamiltonian: A, 
without both the CR and the A’ terms; B, without the A2 term but with the CR term; C, with 
both the CR and the A2 terms; D, with the A2 term but without the CR term. The matter 
system with which radiation interacts is assumed to be an ensemble of two-level atoms 
without any direct mutual interaction. E is the energy difference between the two levels; d is 
the dipole matrix element, and p is the number density of the atoms. 

originating entirely in the neglect of the CR or the A’ term. In particular we observe 
that, in the presence of the A2 term, the CR term changes the instability property 
drastically: (compare curves C and D in figure 2). 

Therefore we conclude that the truncation of the CR term or the A’ term leads to an 
incorrect result of the polariton instability and therefore these truncations should not be 
done in the study of the thermodynamic phase transition. 

5. Discussion (thermodynamics of minimal coupling Hamiltonian) 

We have seen that if the full Hamiltonian in the minimal coupling theory is used, the 
soft-mode instability does not occur in the photon-matter system D within the electric 
dipole approximation, even if many-level atoms and multi-mode radiation are taken 
into account. As is well known, the dynamical property of the equilibrium phase 
transition is characterised by the appearance of the soft-mode instability. Thus 
non-existence of the soft-mode instability indicates that the SPT cannot possibly occur in 
the system D due only to the electromagnetic interaction within the electric dipole 
approximation. The same conclusion has been obtained from thermodynamic consi- 
deration by Bialynicki-Birula and Rzazewski (1978). In their argument, neither the 
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two-level nor the single-mode approximations are required, but the full minimal 
coupling Hamiltonian is used. Therefore their conclusion is a general consequence of 
the minimal coupling in the thermodynamic limit within the electric dipole approxima- 
tion. In this section we study the thermodynamics of the minimal coupling and the 
nature of the thermodynamic phase transition in the photon-matter system D with the 
help of their argument. 

Let us consider the distribution functiun of photon amplitude 

P ( a ) = ( S ( a  - a ) )=Z- 'T rexp( -@H)S(a  - a )  (5.1) 

where a is the photon annihilation operator and P = l /kT.  The trace over the radiation 
field is effected by using the coherent state: 

= z-' TrM(a I eXp( - PH)lcx) (5.2) 

where TrM means the trace over the variables of the matter system. Equation (5.2) can 
be rewritten in the form: 

~ ( a )  = Z-'  exp( - p ~ ( a  )) (5.3) 
where F ( a )  is the constrained free energy defined by 

exp(-PF(a) )=Tr  ( a :  fixed)TrMexp(-PH)=Tr exp(-PH)S(a - a )  

=TrM(alexP(-PH)Ia) (5.4) 

If P ( a )  has sharp maximum at a. f 0, it indicates the appearance of an order parameter. 
In laser oscillation the order parameter varies in time as d.0 f 0, while in the state of 
thermal equilibrium an order parameter, if it can appear, is static: bo = 0. 

Let us now consider the constrained free energy F(A)  defined by 

exp( - PF(A)) = Tr exp( - PH)S (d - A )  ( 5 . 5 )  

where d is the operator of the vector potential. To evaluate the trace in equation ( 5 . 5 )  
we use the approximation of Wang and Hioe (1973), according to which the photon 
operators a and a+ in the Boltzmann factor in equation (5.4) can be replaced by the c 
numbers a and a* in the thermodynamic limit. 

Using this idea we may replace the operator d by the fixed c number A in the 
Boltzmann factor in equation ( 5 . 5 ) .  Thus we have 

exp( - PF(A)) = TrM exp( - P H ( A ) )  
with 

(5.6) 

where the field energy HF and the vector potential A are fixed c numbers and V(ri)  is 
the potential energy of one electron in the jth atom. In the electric dipole approxima- 
tion, the spatial dependence of the vector potential is neglected within each atom; i.e. 
the atom at site Ri is assumed to be driven only by an electric field 
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Then in equation (5.7) we have evaluated the vector potential, not at the electron 
position rj but at the nuclear position Ri. 

To evaluate the trace over the atomic variables in equation (5.6), we use the fact that 
the trace is invariant under a similarity transformation: 

(5 .8 )  TrM exp( -PH(A))  = TrM exp( - iG) exp( - PH(A)) exp(iG) 

where 
N 

G = 1 (e/hc)A(Rj) - ri. 
j = l  

(5 .9)  

The generating function G given by equation (5.9) has often been used to transform 
from the minimal coupling Hamiltonian to the dipole coupling one. 

In general this transformation effects the shift of momenta, both of charged particles 
and of the radiation field, if both the atomic system and the radiation field are 
considered as constituting a single closed system. However, since the value of A in (5.6) 
has been fixed, the effect of the transformation is to shift the momenta of electrons only. 

Effecting the transformation 
N 

exp( - iG)H(A)  exp(iG) = 1 [ p:/2m + V ( r j ) ]  = Ho (5.10) 

we see that the trace in equation (5.6) is independent of variables of the radiation field: 

(5.1 1) 

where Fo is the free energy of the atomic system alone. This means that in the electric 
dipole approximation and in the thermodynamic limit the radiative interaction between 
atoms vanishes and then the SPT cannot occur. The relation (5.11) is a part of the no-go 
theorem concerning the super-radiant phase transition in atomic systems due to 
I Bialynicki-Birula anG K Rzazewski, and this is consistent with our present result 
obtained from the dynamical viewpoint. 

j =  1 

TrM exp( - PH(A))  = TrM exp( - pHo) = exp( - PFo) 
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